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§  ReALE Background 
•  Code decisions and integration 

§  Reconnection 
•  Mesh optimization 
•  Generator motion 

§  Numerical Findings 
•  Reconnection in Sedov and Triple Point Problems 

§  Code Capabilities and Results 
§  Future Work 

Overview 
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ReALE is a 3-stage remap procedure 

Lagrangian Stage 
•  Update state with your favorite hydro scheme 
•  Generators move with local Lagrangian velocity 
 
Requirement: Hydro scheme on arbitrary polygons 

Rezone Stage 
•  Generators create new mesh elements 
•  Mesh topology changes 
 
Requirement: Tool for generating Voronoi mesh data 

Remap Stage 
•  Geometric overlay from post-Lagrange mesh to 

Voronoi mesh 
•  Volume-based, polygon-polygon intersections 
 
Requirement: Geometric overlay tool 
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Code Decisions: Lagrangian Stage 

KULL Code 
§  LLNL ASC Code [Rathkopf et al, 2000] 

§  Production multi-physics code for ICF 

§  Compatible staggered Lagrange 
hydro formulation [Caramana et al, 1998] 

§  Caramana-Shashkov-Whalen edge-
centered Q [Caramana et al, 1998] 

§  Energy conservative 

Generator Motion 
§  Zone generator given time-centered Lagrangian velocity 

§  Average of nodal velocities around each zone 

§  Centroidal component applied generator motion to smooth 
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Polytope 
§  Open-source meshing software 

[Starinshak, Owen, Johnson, 2013] 

§  Generates unstructured meshes 
from Delaunay/Voronoi graphs 

§  See poster for more info 

Parallelism 
§  The high bar for parallel ReALE 

§  Generators distributed across processors 

§  Mesh construction performed in parallel 

§  Communication data structures 
recomputed for each ReALE cycle 

Code Decisions: Rezone Stage 
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Overlink 
§  Second-order geometric overlay on 

polygonal/polyhedral grids [Grandy, 1999] 

§  Slope-limited linear reconstruction 
preserves monotonicity 

§  Supports zone- and node-centered 
quantities 

§  Multimaterial: supports mixed zones 
through material volume fractions 

Parallelism 
§  Massively parallel (100,000+ cores) 

§  Uses communication structures of 
the donor and target meshes 

Momentum currently not conserved 
§  Compatible staggered hydro defines nodal mass using 

subzonal densities 

§  Subzonal quantities lack an (efficient) remap in Overlink 

§  We have a novel solution ready for testing (stay tuned…) 

Code Decisions: Remap Stage 
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Mesh topology is not fixed 
§  Robust to tangling and locking 
§  Avoids mesh stiffness 

Rezoning Offers Many Attractive Properties 
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Mesh topology is not fixed 
§  Robust to tangling and locking 
§  Avoids mesh stiffness 

Automatic mesh generation 
§  Mesh topology based on 

Voronoi is well-defined 
§  Convex polygonal zones   

(if domain is also convex) 

Rezoning Offers Many Attractive Properties 
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Rezoning Offers Many Attractive Properties 

Mesh topology is not fixed 
§  Robust to tangling and locking 
§  Avoids mesh stiffness 

Automatic mesh generation 
§  Mesh topology based on 

Voronoi is well-defined 
§  Convex polygonal zones   

(if domain is also convex) 

Generators are Lagrangian objects 
§  Tracks Lagrangian-frame physics 
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The Voronoi Doesn’t Solve All of Your Problems 

Concerns Looking Forward: 

§  Zone faces can lose alignment with flow features after Voronoi rezoning 
•  Can we constrain generator motion to better track fronts and material interfaces? 

§  Rezoning and remapping need not occur everywhere 
•  Can ReALE be limited to a subset of the domain? Implementation? 

§  How does generator motion and mesh cleaning impact numerical accuracy? 

Mesh Topology Not Easily Controlled 
§  Displacing a generator influences neighbor cells 
§  Can lose grid regularity 
§  Small edges and zone angles can result 
§  Generators do not coincide with zone centers 

Standard ReALE Strategies 
Mesh Cleaning:   Delete small edges in the Voronoi mesh 
Smoothing:   Iteratively move generators to zone centroids to regularize mesh (Lloyd’s algorithm) 
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Eliminating Small Edges Due to Voronoi Rezoning 

Mesh Relaxation 
§  Accept rezoned mesh topology  

§  Optimize resulting zones based on 
local geometric considerations 

Mesh Cleaning 
§  Delete small edges based on 

relative/absolute tolerance 

§  Force mesh back into degenerate 
configuration 

Mesh is not topologically Voronoi 
§  Can break symmetry 

§  Can introduce new communication in parallel 

§  Can invalidate mesh topology (if not careful) 

Mesh is not geometrically Voronoi 
§  Generators not consistent with location of mesh 

nodes/edges/faces 

§  Relaxers may be problem-specific and subject to 
prior knowledge 
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Considerations for Generator Motion 

Important Properties: 
Galilean Invariance – maintain Lagrangian motion when flow corresponds to translation or rotation 

Numerical consistency – generator motion obeys boundary conditions 

Numerical stability – generator motion should inform timestepping 

Additional Concerns 

§  Averaging nodal velocities can trigger spurious generator motion 

•  Consistency error – generator can displace before signal has reached it 

§  Interpolated sub-zonal velocities can pick up high-mode fluctuations 

•  Signals below the resolution of the grid 

§  Centroidal smoothing deviations from Lagrangian dynamics 

•  Generators no longer track Lagrangian-frame feature 

•  Zone density can coarsen as generators approach CVT 

•  Smoothing is nonlocal – centroidal displacements can propagate ahead of flow 
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Sedov: Sensitivities due to generator motion and small edge mitigation. 

Symmetry breaking 
•  Deleting small edges does 

not preserve symmetry 
•  Greater radial scatter 

Numerical Diffusion 
•  Centroidal smoothing 

regularizes mesh 
•  Grid coarsening at and 

behind shock front 
•  Comparable to running 

Eulerian 
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Laplacian Relaxer Edge Cleaning 
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Density 

Winslow-Crowley 
Laplacian relaxer 
preserves symmetry 

Centroidal smoothing 
coarsens mesh 
everywhere 

Sedov: Sensitivities due to generator motion and small edge mitigation. 
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W-C Laplacian appears to stiffen 
mesh during vortical roll-up 

Strategies for mesh relaxation 
are problem-dependent 

•  Better limiting on where and 
how much relaxers work 

•  Implement new relaxers such 
as the Reference Jacobian 
Method [Knupp et at, 2001] 

Improvements Needed 

Triple Point Problem: Mesh Cleaning Versus Relaxing 
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•  Turns on at shock fronts and along roll-up 

•  Some portion of displacement due to 
Lagrangian velcoity is lost 

Smoothed generators do not correctly track Lagrangian features such as interfaces 

Lagrangian Generator Motion Centroidal Smoothing Component 
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Centroidal smoothing 

Triple Point Problem: Centroidal Smoothing Effects 
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Triple Point Problem: Centroidal Smoothing Over Time 

•  Smoothing should turn off if 
zone translates or rotates 

•  Generators in roll-up region 
smoothed at every cycle 

•  Smoothing can coarsen zone 
density and increase numerical 
diffusion during remap 

t =3 t =2 

t =4 t =5 

Red:  negative (CW) 

Blue:  positive (CCW) 

White: Purely Lagrangian  

Black: Purely Centroidal  

Gray:   Some amount of Lagrangian 
motion goes into smoothing 

Vorticity 

Galilean-Invariant Smoothing 
Parameter 

x

n+1 = x

lag + !
�
xc � x

lag
�

Centroidally-smoothed generator update: 

(! = 0)

(! = 1)

!

NOTE: 
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Triple Point Problem in Parallel – Initialization 

⇢ = 1

P = 1

� = 1.5

⇢ = 0.125

P = 0.1

� = 1.4

⇢ = 1

P = 0.1

� = 1.3

Details 
§  280 x 120 square mesh initially 

(degenerate Voronoi config.) 
§  64 processors 
§  Laplacian mesh relaxer 
§  Lagrangian generator motion with 

centroidal smoothing 
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Triple Point Problem in Parallel – Results 
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Interacting Strong Shocks – Initialization 

Details 
§  26503 zones 
§  Edge cleaning 
§  Lagrangian generator 

motion with centroidal 
smoothing 

⇢ = 1

P = 2/3

� = 5/3

Hot gas state 
⇢ = 10�2

P = 10�7

� = 5/3

Cold gas state 

Double shock tube initial condition 
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Vorticity 

Density 

Volume 
Fraction 

Generator 
Material of 

Origin 

Interacting Strong Shocks – Results 
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Generator 
Material of 
Origin 

Constricted Shock Tube – Initialization and Results  

Density 
⇢ = 1

P = 2/3

� = 5/3

Hot gas state 

⇢ = 10�2

P = 10�7

� = 5/3

Cold gas state 

Shock tube initial condition through 2D “nozzle” 
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Shock Over a Cylindrical Barrier – Initialization 

Details 
§  30542 zones 
§  Edge cleaning 
§  Lagrangian generator 

motion with centroidal 
smoothing 

⇢ = 1

P = 2/3

� = 5/3

⇢ = 10�2

P = 10�7

� = 5/3

Hot gas state 

Cold gas state 
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Shock Over a Cylindrical Barrier – Results 
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Shock Over a Cylindrical Barrier – Results (Refinement) 
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Domain Imprinting Visible in Parallel Sedov Test 

Details 
§  128 x 128 square mesh initially 
§  64 processors 
§  Laplacian mesh relaxer 
§  Lagrangian generator motion 

density 

NOTE: Overlink remaps nodal values on 
processor boundaries differently than on 
interior nodes. 
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Future Directions 
Pure Hydro 
§  Investment in mesh optimizers 

•  Reference Jacobian mesh relaxer 

§  More experimentation in generator motion 
•  Quantitative impact on accuracy 

§  Address Overlink’s domain imprinting error in parallel 

§  Implement momentum-conservative overlay treatment 
•  Have devised variation-diminishing technique for staggered hydro  

§  ReALE on subsets of the mesh 

Multiphysics 

§  Demonstrate first rad-hydro ReALE calculations 

§  Model problem: reconnection of an ablating surface flow 
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Sedov: shock moves at incorrect velocity due to remap 

Linear momentum 
currently not conserved 
in overlay remap 
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Generator Material of Origin 

Constricted Shock Tube – Initialization and Results  

Density 

⇢ = 1

P = 2/3

� = 5/3

Hot gas state 
⇢ = 10�2

P = 10�7

� = 5/3

Cold gas state 

Shock tube initial condition through 2D “nozzle” 


